Many gastrointestinal cancers grow uncontrollably when a mutation sets a key biological pathway that governs cell growth, called Wnt, on hyperdrive. The Wnt pathway is hijacked in this way in more than 80 per cent of colorectal cancers and some pancreatic cancers, driving rampant tumour growth. For this group of patients, drugs that block the Wnt pathway, known as Wnt inhibitors, hold great promise and they have been at the centre of intense scientific study, including at Duke-NUS2.
“Although Wnt inhibitors have shown some promise in certain patients, our study reveals intrinsic resistance in others,” said Dr Zhong Zheng, who led the study as a postdoctoral fellow at Duke-NUS’ Cancer & Stem Cell Biology Programme. “Understanding the mechanisms behind this resistance is crucial for personalised treatments for patients when the drugs don’t slow tumour growth at all.”
Focusing on colorectal and pancreatic cancers with a hyperactive Wnt pathway, Dr Zhong, together with Professor David Virshup who leads the Programme at Duke-NUS, used their Wnt inhibiting drug ETC-159, whose efficacy had been established in preclinical models, to assess the cancer cells’ responsiveness.
By analysing genetics data on both responsive and non-responsive tumours, they discovered that a second mutation in another gene, known as FBXW7, makes cancer cells stubbornly resistant to Wnt-blocking drugs.
FBXW7 mutations occur in about 15 per cent of colorectal cancers. “The FBXW7 mutations change the personality of the cancer,” explained Dr Zhong. “They no longer ‘care’ about the Wnt pathway and so the drugs no longer can do their work.”
Testing tumours for the FBXW7 genetic mutations could spare many patients from receiving ineffective treatment, making this not only a potential biomarker but also as a target for a new type of cancer treatment.
“Predicting drug resistance is critical for precision oncology,” said senior author Prof Virshup. “This work reveals how cancers can evade dependencies on Wnt signalling and serves as a solid foundation for further development.”