A. Readiness Assessments
In the first session, students will be introduced to the essence of TeamLEAD by taking part in a short quiz in the following sequence:
1. Reading assignment (posted before class)
2. Individual Readiness Assessment test on the reading
3. Group Readiness Assessment test on the reading
4. Simultaneous reporting of answers and class discussion
The above sequence will be repeated in every session where there is a Readiness Assessment (RA) test. Students are expected to complete the weekly reading assignments before coming to an RA session. Each session will begin straightaway with the RA, and this means students will not be given extra time to complete the readings in class.
There are a total of 8 RAs in this course, covering the following topics:
Genomic Medicine (1 session)
Recent technological advances like next generation genome sequencing make it possible to identify genetic causes of human diseases in the clinic. This course is designed to introduce the students to the concept of recent technological advancements like next generation sequencing in gaining momentum for personalized medicine. We will discuss how such technologies help us gain valuable knowledge for disease stratification, medicine and biomedical research. We will also discuss the social and ethical issues dealing with the use of genetic information.
Cancer and Stem Cell Biology (2 sessions)
This course is designed to introduce the students to the basic concepts of cancer biology and train them to apply these concepts in designing experiments that could aid the development of novel and better therapies to treat cancers. The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. We will discuss how these hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are inflammation and genome instability that generate genetic diversity and fosters multiple hallmark functions. We will also discuss how two emerging hallmarks, reprogramming of energy metabolism and evading immune destruction, are critical to cancer progression. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the “tumor microenvironment”. Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer. In addition, students will also study the profound and multifaceted influences of stem cell research in both science and medicine. The characterization of stem cells (both normal and cancer stem cells) and targeting them for cancer therapy or regenerative medicine will be discussed.
Metabolic Disorders (1 session)
This course is designed to introduce the students the concept of metabolic disorders focusing on type 2 diabetes and factors that influence the development and complications of this disease. Students will be introduced to the biochemical and physiological basis of metabolic disorders and factors that influence the development of these diseases. The progress and pitfalls of current biomedical research to better understand and combat such chronic life threatening conditions, will be discussed. The students will be introduced to an overall view of glucose and lipid metabolism in the context of insulin resistance, diabetes and metabolic syndrome. We will explore the outcomes of the disruption in metabolic processes with a focus on body physiology and organs related to glucose and lipid metabolism. We will debate on possible causes of insulin resistance and metabolic syndrome, including obesity and lifestyle patterns. Students will explore possible mechanisms that result in these disease states, for example, the accumulation of toxic lipid metabolites in muscle, liver, pancreas and arterial tissues. We will discuss current therapies and lifestyle changes to combat these chronic illnesses. Through these sessions, students will be introduced to current challenging problems that remain to be solved in order to develop more effective therapeutic approaches.
Emerging Infectious Diseases (1 session)
This course is designed to introduce students to the basic concepts of virology. Students will learn to apply these concepts to design experiments that aid the development of novel methodologies to improve the diagnosis, detection or treatment of infectious diseases. Emerging infectious diseases (EIDs) are considered to be among today’s major challenges to medical science, global health, and human development. Rapid changes associated with globalization and development, especially environmental change and the ease of transport, are mixing people, domestic animals, wildlife, plants, and associated pathogens, at unprecedented frequencies and combinations. Recent outbreaks of Ebola virus, H1N1, H5N1, SARS, and Nipah virus have cost numerous lives and heavily impacted regional and national economies and students discuss their emergence and consequences. Students will also discuss how to detect and define EIDs, especially novel pathogens. Of central importance in all of these scenarios is the convergence of pathogens, hosts, and vectors resulting in increased EID interactions and spill-over at human-natural interfaces. As 75% of recognized EIDs either once were, or currently are, zoonotic - that is, transmissible between animals and humans, students will be introduced to the concept of the epidemiological triad and how spatial-temporal convergence can serve to amplify or dampen transmission. Throughout these classes, students will be introduced to the concept of One Health and how we can mitigate EID outbreaks with surveillance, therapeutics and vaccinations.
Neuroscience (2 sessions)
Students will be introduced to how the brain works, the current methods and techniques employed to study it, its abnormal function in disease and mental disorders, and the medical, legal, and societal consequences of individual differences in brain function. We will explore the basics of the nervous system, and discuss the use of mouse models and functional magnetic resonance imaging in the study of common mental diseases and disorders. These health issues include stroke, schizophrenia, depression, Parkinson's disease, and Alzheimer's disease. In-class exercises include interpreting experimental data and reasoning out the relationship between brain structure and function through comparative anatomy. Such exercises help students to understand the complex human brain at multiple levels, ranging from chemical signalling in nerve cells to gross organization. They also link the properties of the brain to the behaviours it supports and how disruptions to the system can lead to disease states. We will also focus on individual differences in brain function. For example, we will discuss the use of neuroimaging in medical and legal contexts, such as attempts to determine which individuals will develop dementia or to identify psychopaths. Students will explore the links between genetics, the nervous system, and behaviour, again considering the societal implications of such relationships (e.g. a “warrior gene” predicting aggressive behaviour). Through these explorations, students will gain an appreciation for the difficulty of defining “abnormal behaviour” and the variety in neural and mental function. Such lessons are valuable both for understanding neuroscience, and for better appreciating how scientific inferences are made and how these inferences affect medicine and society.
Regenerative Medicine (1 session)
Regenerative medicine is an emerging area of translational research. It involves replacing, regenerating or engineering cells or tissues to establish normal function of organs. Research in this area addresses methods to grow cells and tissues that can be used in the clinic. Regenerative medicine has become an important area of study due to a global ageing population, longer waiting times for organ transplant, and the challenges of organ rejection. Students will be exposed to the fundamentals of regenerative medicine and how research in this area fits in with current medical practice.
B. Project Proposal
Students will complete a written project proposal as a group, and will present their proposals in the form of an oral presentation. They will learn key skills in scientific critique and communication through this assignment.
C. Field Trips
There are a few field trips in this course, which will be confirmed nearer to the start of each semester. The number of field trips vary, depending on the availability of the venues during each semester.